The stratosphere is the second major layer of Earth's atmosphere, just above the troposphere, and below the mesosphere. It is stratified in temperature, with warmer layers higher up and cooler layers farther down. This is in contrast to the troposphere near the Earth's surface, which is cooler higher up and warmer farther down. The border of the troposphere and stratosphere, the tropopause, is marked by where this inversion begins, which in terms of atmospheric thermodynamics is the equilibrium level. The stratosphere is situated between about 10 km (6 miles) and 50 km (31 miles) altitude above the surface at moderate latitudes, while at the poles it starts at about 8 km (5 miles) altitude.
The stratosphere is layered in temperature because it is heated from above by absorption of ultraviolet radiation from the Sun. Within this layer, temperature increases as altitude increases (see temperature inversion); the top of the stratosphere has a temperature of about 270 K (−3°C or 26.6°F), just slightly below the freezing point of water.[1] This top is called the stratopause, above which temperature again decreases with height. The vertical stratification, with warmer layers above and cooler layers below, makes the stratosphere dynamically stable: there is no regular convection and associated turbulence in this part of the atmosphere. The heating is caused by an ozone layer that absorbs solar ultraviolet radiation, heating the upper layers of the stratosphere. The base of the stratosphere occurs where heating by conduction from above and heating by convection from below (through the troposphere) balance out; hence, the stratosphere begins at lower altitudes near the poles due to the lower ground temperature there.
Commercial airliners typically cruise at an altitude near 10 km in temperate latitudes, in the lower reaches of the stratosphere.[citation needed] They do this to optimize jet engine fuel burn, mostly thanks to the low temperatures encountered near the tropopause. It also allows them to stay above any hard weather, and avoid atmospheric turbulence from the convection in the troposphere. Turbulence experienced in the cruise phase of flight is often caused by convective overshoot from the troposphere below. Although a few gliders have achieved great altitudes in the powerful thermals in thunderstorms, this is dangerous. Most high altitude flights by gliders use lee waves from mountain ranges and were used to set the current record of 15,447m (50,671 feet).
Tidak ada komentar:
Posting Komentar